Modelowanie i obliczenia statyczne kratownicy w AxisVM

Krok po kroku

Nowe	zadanie
Nowy model	
Wybierz widok początkowy:	Katalog C:\Users\T530\Desktop\Przykłady AxisVII\\Przykłady_AxisVII\\ Nazwa pliku modelu: Model 1
Widok z góry Z H	N <u>o</u> rma projektowa Eurokod [PL] Jednostki i formaty EU Język raportu Polski
	Nagłówek strony Projekt: Obliczenia wykonał: Paweł Ordziniak
	Komentarz Projekt: Obliczenia wykonał: Paweł Ordziniak Model: Model 1.axs
	OK Anuluj

Ważne:

Oś Z jest domyślną osią działania grawitacji. W ustawieniach programu można przypisać dowolny kierunek działania grawitacji.

Geometria	W pierwszym kroku narysujemy fragment pasa górnego z krzyżulcami.
	Polilinia
	✓ Kliknij na modelu w punkcie (0;0;0)
	✓ Wybierz z klawiatury literę "X" i wprowadź współrzędną dX= 2.5 dx[m]: 2,500 d r[m]: 2,500 dy[m]: 0 d a[0]: 0 dx[m]: 2,500 d dr[m]: 0 dy[m]: 0 d a[0]: 0 dy[m]: 2,500 d dr[m]: 0
	✓ Ustaw dY= 0; dZ= 0
	✓ ENTER
	✓ Wprowadź analogicznie pozostałe punkty (-1.25; 0; -1) i (-1.25;0;1)
	Ważne: Wartości dziesiętne możesz wprowadzać na klawiaturze numerycznej z użyciem przecinka. Program jednakowo interpretuje w wartości liczbowej symbol [,] jak i [.].

Powielimy teraz narysowane elementy. Aby przyspieszyć rysowanie wykorzystamy podczas kopiowania funkcję ciągnięcia wybranego węzła, w celu szybszego utworzenia pasa dolnego.

Przesuń/Kopiuj

 Zaznacz wszystkie narysowane elementy za pomocą obszaru lub wybierając gwiazdkę (Wszystko) na pasku selekcji.

✓ Zaznacz obszarem pas górny.

Ważne:

Zaznaczając obszar:

-<u>z lewej strony do prawej</u> program wybierze tylko elementy znajdujące się w całości wewnątrz wskazywanego obszaru (linia ciągła obszaru).

-z prawej strony do lewej program wybierze również elementy przecięte obszarem wskazywania (linia przerywana obszaru).

 Chwyć środkowy węzeł (przy kursorze ikona z czarnym kwadratem) i wykonaj ruch myszką.
 Spowoduje to ciągnięcie konstrukcji w zahaczonym węźle (lub elemencie).

- Puść klawisz myszy, a konstrukcja cały czas będzie dopasowywać się do aktualnego wskazania kursora.
- Na dodatkowym pasku edycji, który pojawia się podczas przeciągania upewnij się, że jest wybrana pierwsza opcja "Przeciągnij"
- ✔ Wskaż punkt o współrzędnej (0;0;1)

 $\langle \langle \mathcal{O} \langle \rangle | \mathfrak{A} \rangle \langle \rangle$

Obejrzymy teraz utworzony model w widoku zrenderowanym 3D.

 Wybierz widok zrenderowany 	Norma Eurokod-PL Przypadek : ST1 C C C C C C C C C C C C C
 Obróć model. Prawym przyciskiem myszy kliknij na pustym obcząza modelu i unbierz. Obróć" 	▶ Cofnij Ctrl+Z ∼ Przywróć Shift+Ctrl+Z ▶ Wybierz wszystko
obszarze modelu i wybierz "Obroc .	Q Przybliż Ctrl+/ Q Oddal Shift+Ctrl+/
	Dopasuj do okna Ctrl+W Przesuń
 Obróć model tak, aby sprawdzić poprawność ułożenia kształtowników. 	
 Przywróć z menu pod prawym przyciskiem myszy "Widok z przodu". 	

 Parametry podpory lewej: 	Podpora dla węzła 1
	Definiuj Okodyfikuj
	Kierunek ③ Globalny ○ W kier. odniesienia ○ Względnie do pręta/żebra ○ Względnie do krawędzi
	Odniesienie 👻
	R _X [kN/m] = 1E+10 ▼ R _Y [kN/m] = 0 ▼
	$R_{Z} [kN/m] = 1E+10 \bullet$ $R_{XX} [kNm/rad] = 0 \bullet$
	R _{YY} [kNm/rad] = 0 • R _{ZZ} [kNm/rad] = 0 •
	Pobierz z >> Obliczenia
 Parametry podpory prawej: 	$R_{X} [khVm] = 0 \qquad \checkmark$ $R_{Y} [khVm] = 0 \qquad \checkmark$ $R_{Z} [khVm] = 1E+10 \qquad \checkmark$ $R_{YY} [khVm/rad] = 0 \qquad \checkmark$
	$R_{YY} [kNm/rad] = 0 \qquad \checkmark$ $R_{ZZ} [kNm/rad] = 0 \qquad \checkmark$

Ważne:

Całkowite ograniczenie przesuwu lub obrotu przyjmuje się jako 1*10¹⁰, czyli 1E+10. Aby szybko wprowadzić tę wartość, wystarczy z klawiatury wpisać 1e10.

Określimy dla zadania 2D odpowiednie węzłowe stopnie swobody.

Ważne:

Aby zapewnić stabilność układu płaskiego (2D), należy ustawić w modelu węzłowe stopnie swobody. Nasze zadanie jest modelowane jako 2D, ale pamiętaj, że pracujesz cały czas w środowisku 3D.

✔ Wybierze wszystkie elementy na modelu.

🖌 ОК

 "Dźwigar kratowy w płaszcz. X-Z" automatycznie ustawi odpowiednie zwolnienia.

ęzłowe stopnie swobody 🛛 🔀				
 Zastąp Złącz 				
Węzeł swobodny Węzeł utwierdzony Dźwigar kratowy w płaszcz. X-Y Dźwigar kratowy w płaszcz. X-Z Dźwigar kratowy w płaszcz. Y-Z Kratownica przestrzenna				
Przemieszczenia wymuszone v V e _X Woiny Z V e _Y Zabiokowany Z V e _Z Woiny Y				
✓ θ _X Zablokowany ✓ θ _Y Zablokowany ✓ θ _Y Zablokowany ✓ θ _Z Zablokowany				
Pobierz z >> OK Anuluj				

Ważne:

W przypadku pominięciu tego kroku, program przed uruchomieniem obliczeń sam rozpozna typ konstrukcji i zaproponuje użytkownikowi odpowiednie ustawienia.

Obciążenie węzłowe

Ważne:

Poszukiwanie wartości Min, Max odnoszą się do widocznych elementów modelu. Jeśli chcesz poszukać największej wartości w krzyżulcach, ogranicz widok modelu za pomocą 🕅 "Fragmentów".